Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Modeling of Cross Flow Compact Heat Exchanger with Louvered Fins using Thermal Resistance Concept

2006-04-03
2006-01-0726
Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal management systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers, and intercoolers are typical examples of the compact heat exchangers that can be found in ground vehicles. Among the different types of heat exchangers for engine cooling applications, cross flow compact heat exchangers with louvered fins are of special interest because of their higher heat rejection capability with the lower flow resistance. In this study, a predictive numerical model for the cross flow type heat exchanger with louvered fins has been developed based on the thermal resistance concept and the finite difference method in order to provide a design and development tool for the heat exchanger. The model was validated with the experimental data from an engine cooling radiator.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit

2005-04-11
2005-01-1396
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability.
Technical Paper

Dual-Use Engine Calibration:

2005-04-11
2005-01-1549
Modern diesel engines manufactured for commercial vehicles are calibrated to meet EPA emissions regulations. Many of the technologies and strategies typically incorporated to meet emissions targets compromise engine performance and efficiency. When used in military applications, however, engine performance and efficiency are of utmost importance in combat conditions or in remote locations where fuel supplies are scarce. This motivates the study of the potential to utilize the flexibility of emissions-reduction technologies toward optimizing engine performance while still keeping the emissions within tolerable limits. The study was conducted on a modern medium-duty International V-8 diesel engine with variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR). The performance-emissions tradeoffs were explored using design of experiments and response surface methodology.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine

2005-04-11
2005-01-0167
Simultaneous reduction of nitric oxides (NOx) and particulate matter (PM) emissions is possible in a diesel engine by employing a Partially Premixed Compression Ignition (PPCI) strategy. PPCI combustion is attainable with advanced injection timings and heavy exhaust gas recirculation rates. However, over-advanced injection timing can result in the fuel spray missing the combustion bowl, thus dramatically elevating PM emissions. The present study investigates whether the use of narrow spray cone angle injector nozzles can extend the limits of early injection timings, allowing for PPCI combustion realization. It is shown that a low flow rate, 60-degree spray cone angle injector nozzle, along with optimized EGR rate and split injection strategy, can reduce engine-out NOx by 82% and PM by 39%, at the expense of a modest increase (4.5%) in fuel consumption.
Technical Paper

Lean and Rich Premixed Compression Ignition Combustion in a Light-Duty Diesel Engine

2005-04-11
2005-01-0166
Lean Premixed Compression Ignition (PCI) low-temperature combustion promises to simultaneously reduce NOx and PM emissions, while suffering a moderate penalty in fuel consumption. Similarly, opportunities exist to develop rich PCI combustion strategies which can provide the necessary exhaust constituents for aggressive regeneration of a Lean NOx Trap (LNT). The current work highlights the development of lean and rich PCI combustion strategies. It is shown that the lean PCI combustion strategy successfully operates with low NOx and PM, at the expense of a 5% increase in fuel consumption over conventional diesel operation. The rich PCI combustion strategy similarly operates with low NOx and PM, and produces enough CO (up to 5% by volume in exhaust) for aggressive regeneration of an LNT.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates

2004-10-25
2004-01-2994
Two methods for mitigating unacceptably high HCCI heat-release rates are investigated and compared in this combined experimental/CFD work. Retarding the combustion phasing by decreasing the intake temperature is found to have good potential for smoothing heat-release rates and reducing engine knock. There are at least three reasons for this: 1) lower combustion temperatures, 2) less pressure rise when the combustion is occurring during the expansion stroke, and 3) the natural thermal stratification increases around TDC. However, overly retarded combustion leads to unstable operation with partial-burn cycles resulting in high IMEPg variations and increased emissions. Enhanced natural thermal stratification by increased heat-transfer rates was explored by lowering the coolant temperature from 100 to 50°C. This strategy substantially decreased the heat-release rates and lowered the knocking intensity under certain conditions.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

The Impact of Exhaust Gas Recirculation on Performance and Emissions of a Heavy-Duty Diesel Engine

2003-03-03
2003-01-1068
This work studies the complex interactions resulting from the application and control of Exhaust Gas Recirculation (EGR) on a production heavy-duty diesel engine system, and its effectiveness in reducing NOx emissions. The coupling between EGR, the Variable Geometry Turbocharger (VGT) and the EGR cooler critically affects boost pressure, air/fuel ratio (A/F), combustion efficiency and pumping work. It is shown that EGR provides an effective means for reducing flame temperatures and NOx emissions, particularly under low A/F ratio conditions. However, engine thermal efficiency tends to decrease with EGR as a result of decreasing indicated work and increasing pumping work. Combustion deterioration is predominant at higher load, low speed and low boost conditions, due to a significant decrease of A/F ratio with increasing EGR.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Technical Paper

Development and Validation of a Quasi-Dimensional Model for HCCI Engine Performance and Emissions Studies Under Turbocharged Conditions

2002-05-06
2002-01-1757
A PC-based, computationally-efficient, quasi-dimensional simulation of HCCI engine performance and emissions has been developed with the intent to bridge the gap between zero-dimensional and sequential fluid-mechanic - thermo-kinetic models. The model couples a detailed chemistry description, a core gas model, a predictive boundary layer model, and a ring-dynamics crevice flow model. The thermal boundary layer, which is axially discretized to account for the relative piston motion, is modeled using compressible energy arguments. The ring-pack crevice zone is modeled using a coupled ring dynamic and flow model. The physically-based mathematical model is solved within the context of a single simulation framework, which lends to flexibility and expediency in performing a range of parametric studies. The simulation was validated under turbo-charged conditions using data obtained from a Caterpillar 3500 test engine.
X